test

NAN 604: Nanotechniques  
T, Th 1:00-2:15

Class syllabus: Link

References:

1.  Krumeich, F., Properties of Electrons, Their Interactions With Matter and Applications to Electron Microscopy, ETH Zurich (PDF)


2.  Xia, Y.N. and Whitesides, G. M., Soft lithography. Annual Review of Materials Science, 1998. 28: p. 153-184. (PDF)

3.  Alessandrini, A. and Facci, P., AFM: a versatile tool in biophysics. Measurement Science & Technology, 2005. 16(6): p. R65-R92. (PDF)

4.  Butt, H. J., Cappella, B. and Kappl, M., Force measurements with the atomic force microscope: Technique, interpretation and applications. Surface Science Reports, 2005. 59(1-6): p. 1-152. (PDF)

5.  Grier, D. G., A revolution in optical manipulation. Nature, 2003. 424(6950): p. 810-816. (PDF)

6.  Neuman, K. C. and S. M. Block, Optical trapping. Review of Scientific Instruments, 2004. 75(9): p. 2787-2809. (PDF)

            7.  Vilfan, I. D., Lipfert, J., Koster, D. A., Lemay, S. G.  and Dekker, N. H. , Magnetic Tweezers for Single-Molecule Experiments, Springer Handbook of Single-Molecule Biophysics, 2009 (PDF)


Homework:


Presentation/report:
(Presentations in class on Nov. 27 & 29; report due on Nov. 29)
    - Each student will give a timed, conference-style presentation of 10 min (plus time for questions after)
    - Presentation should include a cursory explanation of the technique plus a description of one (1) application from a journal article
    - The report should include a more complete description of the technique plus an in depth description of two (2) journal articles (one can be the one in your presentation)
    - Each student will focus on a technique not covered in class. Each student's subject may be chosen by him/her (and cleared by the instructor), but each will be unique
    - Some possible examples include (but are not limited to):

          electrospinning                                SQUID

          FRET                                                Dip-pen nanolithography

          mass spectrometry                          dynamic light scattering

          raman spectroscopy                       electrophoresis/dielectrophoresis

       

Links:


Topic  Slides  Outline Additional Links
beam sources  videos: 1, 2
PDF
the physics of emission; source materials and defining characteristics; ion sources; 
why use them?; types and typical characteristics 
electron diffraction experiment video
vacuum technology  video
PDF
Positive displacement pumps: Rotary Vane, Rotary piston, Roots; Momentum transfer pumps: Turbomolecular, Diffusion; Entrapment pumps: Cryopump; Measuring vacuum pressure: Thermocouples, Ionization gauges   Kurt Lesker vacuum technical notesPump family tree; Pump operating ranges
thin films  video
PDF
Evaporative Techniques: Thermal evaporation, Molecular Beam Epitaxy (MBE); “Glow-Discharge” Processes: Sputtering; Thickness & Rate Measurement; Gas-Phase Methods: Chemical Vapor Deposition (CVD); Liquid-Phase Methods: Electroplating, Spin coating  basic description of several deposition processes
"hard" lithography  video
PDF
Photolithography: The basics, Considerations and solutions, A practical guide; Electron beam lithography: The basics, E-beam resist; Ion Milling; Templated growth interactive pholith procedures, youtube lithography: 1, 2, 3
ion milling  video
PDF
Ion Milling; IBID  Reviews: 1, 2
soft lithography     video
PDF
Materials: Poly Dimethylsiloxane (PDMS); Microcontact Printing (μCP); Replica Molding (REM); Microtransfer Molding (μTM); Micromolding in Capillaries (MIMIC); Solvent-assisted Micromolding (SAMIM) PDMS prepa second paper from Whitesides on Soft Lith
etching  video
PDF
Wet etching: Mechanism, Crystal Planes; Dry etching: ion sputtering, Reactive Ion Etching (RIE)  
fabrication strategy  video
PDF
Objectives; The device; Fabrication; Strategy Discussion paper (Sazonova)
emerging techniques: DNA Origami  video
PDF
Introduction; Origami design basics; Applications: 2D shapes, 2D topographical designs, Particle patterning, 3D designs, Machines  DNA origami paper, TED Talk: Paul Rothemund
crystallography/diffraction Introduction; Apparati; Diffraction: Derivation of Bragg’s Law, The unit cell, 1D vs 2D; Application: protein crystallography   X-ray diffraction handoutinteractive tutorialsprotein crystallizationBravais lattices
transmission electron microscopy Overview; Components: Source, Condenser Lens, Aperture, Sample, Objective Lens, Objective Aperture, Intermediate Lens/Projector, Imaging Screen TEM ComponentsTEM simulator
scanning electron microscopy Overview, Components, Sample interactions SEM primers: 12
scanning probe techniques 1: STM History; OverviewSTM; STM Mechanism; Components of STM: probe (formation), scanners(piezoelectricity) Introduction to STM
scanning probe techniques 2: AFM Atomic Force Microscopy: Cantilevers, Quadrant Photo Diode, Contact mode imaging, Tapping mode imaging, Non-contact mode, Artifacts; Other imaging modes  AFM primerAFM artifacts
emerging techniques: superresolution microscopy Introduction; Review: diffraction limit; Super-resolution techniques; STimulated EmissionDepletion Microscopy, Photo-Activated Localization Microscopy, STochastic OpticalReconstruction Microscopy; Video: Inventing PALM  STED/STORMPALMNature Method of the Year video
STM atomic manipulation Introduction; Technique: Experimental Aspects, Lateral Manipulation, Vertical Manipulation; Examples; Video: Don Eigler Review articleTEDx Talk: Don Eigler
scanning probe manipulation Introduction; Force Spectroscopy: Cantilever mechanics, The Force Curve, Interpretation, Lateral Forces; Nanomanipulation: Case study- MWNT on graphite MWNT on graphite papers: 123
molecular attachment techniques Introduction; Physical Attachment: Adsorption, Beam deposition; Chemical Attachment: Gold-thiolchemistry, Silanization; Biochemical Attachment: DNA labeling, Biotin-streptavidin, Dig-Antidig EBID welding videoa Msc thesis on tip functionalization
mems manipulation    Introduction; Fabrication; Actuation: electrostatic, electrothermal; Operation; Application  Molhave Thesis
optical tweezers Introduction; Trapping mechanism; Apparatus; Multiple trapping: Time-sharing, Holographictweezers; Applications  (see pdf links at top of page), videos: 123
magnetic tweezers Introduction; Apparatus; Stretching force; Twisting force; Variations on the theme (see pdf links at top of page)
emerging techniques: micro and nanofluidics Introduction; Fabrication; Microfluidic valves; Example: Mixer; Nanofluidics; Example: DNA imaging  Quake TedX talk 

Comments